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Abstract-An approximate method for calculating the intensity and fluxes of radiation from an 
inhomogeneous two-phase layer with emitting and reflecting boundary surfaces has been developed. By 
using the numerical integration of the radiation transfer equation, the accuracy of the method has been 
ascertained for a wide range of variation of the initial parameters. A general definition of the effective 

temperature of the layer is presented. 

NOMENCLATURE 

6 = I@, p), radiation intensity at point z and 
in direction 8 = arc cos p ; 

B, = (l/n)‘ooT4, Planck radiation intensity 
for the temperature T = T(7); 

00, Stefan-Boltzmann’s constant; 

s, = S(z), function of radiation sources; 

K, 0, absorption and scattering coefficient, 
respectively ; 

a, = lc+a, coefficient of medium 
attenuation ; 

i 3 = a/(~ + a), probability of quantum 
survival ; 

siw szolx intensity of radiation incident on the 
left and on the right side of the medium, 
respectively ; 

Tsl, r,(P, d temperature and reflection 
coefficient of the left boundary surface, 
respectively ; 

TS2, r,(p, p’), temperature and reflection 
coefficient of the right boundary surface, 
respectively ; 

E,, ED emissivity on the left and on the right side 
of the inhomogeneous layer, respectively ; 

4 reflectivity of the semi-infinite two-phase 
layer ; 

R,, Rzv reflectivity on the left and on the right side 
of the inhomogeneous layer, respectively ; 

T, transmittivity of the layer ; 
o<x<x,, layer thickness ; 

s 

x 

s 

x0 
ojr== cw(x)dx 5 7,, = Wdx, 

0 0 

optical thickness of the layer. 

1. INTRODUCTION 

INCREASING intensification of heat-power engineering 
equipment places more stringent requirements on the 
accuracy of solution of heat- and mass-transfer pro- 
blems, including those of radiative heat transfer. 
However, incorporation of the real properties of a 
heat-transfer agent (which, in the general case, is a 
mixture of molecular gases and particles) and of the 
working chambers makes the mathematical statement 

of the problems much more involved (see, for example 
[l-4]). Modern electronic computers enable one to 
analyze any problem of radiation transfer in plane 
two-phase inhomogeneous media. Even so, the de- 
velopment of approximate methods for calculating the 
luminescence characteristics of inhomogeneous two- 
phase media has remained to be one of the most 
pressing problems to date. The results obtained using 
these methods can be employed to develop algorithms 
for computing more complex problems and to carry 
out a host of engineering calculations for establishing 
certain regularities in the modern technological 
processes. 

The existing literature on the study of radiation 
transfer in inhomogeneous two-phase media com- 
prises a large number of publications [l-6]. However, all 
of them present the solution of the radiation transfer 
theory problems only for particular situations possible 
in practice. In [7,8] the method has been suggested for 
treating homogeneous two-phase systems, which con- 
sists in approximate determination of the function of 
sources with subsequent direct integration of the 
radiation transfer equation. This method allows one to 
obtain analytical equations of the emissivity not only 
for plane, but for spherical and cylindrical two-phase 
media. Comparison of these calculations with the 
results of numerical integration of the radiation trans- 
fer equation [6] demonstrates that the accuracy of the 
developed method within a wide range of optical 
characteristics of the medium and of the experiment 
conditions is adequate for its practical application. 

In the present paper this method has been extended 
to a most general problem of the theory of radiation 
transfer in plane two-phase media, such as pro- 
pagation of radiation in an inhomogeneous medium 
with emitting and reflecting boundary surfaces. The 
sole simplification is the assignment of the same 
function of position for the absorption and scattering 
coefficients, which results in the constant value of the 
quantum survival probability. But if we discard this 
simplification and introduce a certain effective quan- 
tity (as is done in the present paper for temperature), 
then the method suggested can be used for a wide class 
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of problems. 

The paper analyzes hemispherical and directed 
characteristics of radiation emitting from a layer as 

functions of the optical properties of the medium and 

the boundary surfaces and also of the temperature 
profile. The results obtained by this method are 
compared with those obtained by numerical solution 

of the transfer equation for the given problem. The 

comparison has shown that the method is accurate 
even in the case of exponential temperature approxi- 
mation over the layer. 

When the condition of local thermodynamic 

equilibrium is satisfied, the radiation transfer equation 

can be written for the studied problem [I,91 as: 

dJ(r,p) 

’ dr 
--~~~ + I(s, j1) 

i ’ 

=2 -1 J 
I(r,jj’)d$ + (1 -i.)B(r). (1) 

yields a system of two differential equations : 

In this equation the scattering function for a volume 
element of the medium is assumed to be spherical. The in which 
anisotropism ofscattering [lo] can be quite accurately 

allowed for by representing the scattering function as 

follows : 

and P@,P’) = (1 + 31 -uk%-$1, (2) 

where u is the doubled hemispherical fraction of the 
backward scattering. The above representation (2) 
reduces the solution of the anisotropic scattering 

problem to the isotropic case, i.e. to the solution of 

equation (1) with U(T formally substituted for 0. 

The boundary conditions for the stated problem 
and 

are : 

The assumption that 

k2 = 4(1-R), J(7) = I,(t) + I,(7) 

0 
IK4P) = Sl(Ao + 

I_, 
r, (p>/41(0, /Odd. 

gives 

p > 0% 
(3) 

i‘ 

i I 

Ih, PI = Y,(P) + rz(p./N(s,,~‘)d~‘~ 
do 

p < 0. 1 
Here the functions g&j) (i = 1,2) determine both the 
radiation from the outside and the emitted radiation of 

the boundary surfaces, @( Ti) (ci is the emissivity of the 
boundary surfaces). The reflection coefficients, ri(p, p’), 

for the Lambert reflecting surfaces are constant 

quantities : 

The solution of (8) is 

J(7) = A, e-k@[ler) + A, emkr 

+ @j(T) + O*(T). (9) 

ri(p,p’) = r(,, = const(i = 1,2). (4) 

and in the case of specular reflection these are where 

r,(p. Jo ) = rcl, .6(j1 - jt’b 0) 

where 6 is the delta function. 

2. APPROXIMATE. METHOD FOR SOLLJTIO\I 
OF EQU.4TlO\ (I) 1’ 

r 

Q*(z) = k B(z’)e- i,r C-) dT’. 

0 i 

From this, the quantities I,(r) and I*(T), which are the 
average (over the hemispheres) radiation intensities, 
can be easilv obtained 

Integrate equation (1) with respect to p, first within 
[0, I] and then within [-I, 01. The familiar Schuster- 

_ _ 
Schwarzschild approximation Lt. 111. i 
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= ; [I,(T) + I,(z)] + (1 -i,)B(s), ; 

F(r) = I,(r) - I*(T) 

d*J(r) 
mdYr - k*J(r) = - 2k*B(r). 

ii, 
Q1(z) = k B(z’)e *(’ ‘) dr’, 

\ (11) 
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Z,(r) = a,A, e -W-T) + a,~, e-kr medium. In a majority of practical problems, radiation 
from the medium is of fundamental interest, so we shall 

+ c@,(z) + aA( 

1 

,(12) consider the quantities Z,(z,) and Zz(0) in more detail. 

Z2(2) = a,A, e-k(ro-r) + a,A, eekr Substituting (17) into (12) and performing simple 

+ a@,(r) + ai%( 
transformations, we obtain 

I,(7,) = El t TG, + RIG,, (20) 
where 

a1 = a(2 + k). 
Z,(O) = E, t TG, + R2Gl, (21) 

aI = a(2 - k), 

The constants A, and A, can be found from the where 
boundary conditions (3) 

(22) 
1 

T = $(l -RZ)e-k’o, 

Z,(O) = 
I 

N',Adti = G, + PIZ~(% 
0 

(13) R, = ;[R(I-p,~) - (R-p,)e-2kr0](i=1,2), (23) 
0 

Z2(70) = 
s 

Z(~O,P~)~P = G2 + ~J1(7oh 
-1 1 E, = YC(~-P~R)~~ - (R-p,)& emkrol, 

where 3 (24) 

s 

1 0 

G, = g,(hh G2 = &)dpL, (14) 
E, = ~[(l-~~R)ch - (R-p2M2 emkrol. 1 

0 s -1 It can be easily seen that T defines the layer 
1 lo 

P’=I,o 0 ss 
r,(p, $)Z(O, $)dp dp’, 

-1 

1 O l 
P2 = ~ 

ss I,(701 -1 0 
r,(~,~')Z(7,,~')d~d~'. 

1 

transmittivity, R, and R2, the layer reflectivity on the 
left and on the right side, respectively, and E, and E, 

(15) define the contributions of the internal sources to the 
emission of radiation from the right and from the left 
side, respectively. However, according to the boundary 

The quantities pi(i = 1,2) are certain effective re- conditions (3) or (13), relations (20) and (21) determine 

flectivities of the boundary surfaces. the emission of radiation to the reflecting boundary 

Using the conditions (13) and also the relations surfaces. Consequently, the emission of radiation from 
the layer will then be determined by the quantities 

Q,(O) = 417 @l(70) = 0, 

@2(O) = 0, %(70) = 42, 

we obtain 

A, = ;{G2(1 + R)(l - plR) 

- G,(l + R)(R - ~*)e-~” 

-(R - p,)(l -PIW~ 

+ (R-PAR - P~~#Q e-k'o)T 

A2 = ;{G,(l + R)(l - p2R) 

- G2(1 + R)(R - pl)e-kro 

- (R - PIN - ~2W1 

+ (R - PM - P~MJ~~-~'"), 

where 

(16) (1 -p2)Z,(7,) and (1 -p,)Z,(O). It should be noted that 
G, and G2 define the radiative flux which has already 
passed through the boundary surfaces and is imping- 
ing directly on the layer under study. Therefore, if the 
intensities of radiation, G; and G;, impinging on the 
layer from the outside are prescribed in the problem, 
then G, = (1 -pJG; and G2 = (1 -p,)G;. 

Thus, the obtained quantities (22)-(24) are charac- 
teristics of the layer itself, bound by the partially 
reflecting surfaces. Characteristics of the layer together 

(17) with the reflecting walls are defined as (1 -p2)T, 
(1 - p2)R,, (1 - p2)E, for the emission of radiation to 
the right and as (1-p,)T, (l-p,)R,, (l-p,)E, for 
radiation leaving the left-side surface. 

3. ANALYSIS OF PARTICULAR CASES 

In the case of purely emitting media equation (1) has 
(18) an exact solution [12] : 

ZSX(7, 4 I p > 0 

D= (1 -PIW -PAR) 1 

- (R - pd(R - P2)e-2k’o, 
= 1 _ plp2 e-2ro,iP {b; + EJ?(T~~)~-‘“‘~ 

(19) 

R = 5 = 2 - k PC 1 - x/Cl - 4 + p1 e-roiM[b’l + E2B(TS2)e-To’o]}, (25) 

a2 2 + k 1 + J(l - n)’ i Zev4/41p<0 

The quantity R has the meaning of the reflectivity of a 1 
semi-infinite layer [7]. 

The solution obtained gives a complete determi- 
nation of the values ofl, (7) and Z*(7) at any point of the 

= 1 - plp2 e-*roifl {b; + E2B(~2)e-To’P 

+ p2 emroiP[b; + E,B(T,,)I-~~‘~]}, (26) 
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where 41 = 4+(o) + 4-m 

s I” 

b; = B(T’)e-“,” 

0 
(27) 

i(, 
b; = c B(*‘)e - (TII 

Jo 

In order to carry out the averaging of the quantities 
(25) and (26) over the angles, we shall avail ourselves of 
the stipulation utilized in [6,7, 121. It is this : direction- 

averaged intensity of radiation from the medium is 

equal to the intensity of radiation emitted by the 
medium at the angle 0 = 60” (p = l/2) about the 

normal to the layer. This condition holds strictly in the 

case of radiation propagating in a diffuse manner [ 131, 
while in [6,7] it is shown that this condition is also 

valid in calculation of the luminescence characteristics 
oftwo-phase media. Having applied it for (25) and (26), 
we obtain the expressions which exactly coincide with 

(24). Assuming that T(t) = T(T, -r), i.e. that the 

temperature distribution is symmetrical about the 
middle of the layer, and that ci = s,(T,) = 1 -p, and 

s2 = sZ(TS) = l-p,, we find 

I,@,) = Mro) 

1 
-..___ 

-1 _ (I _ st)(l _8.)e-4rn {Qws)e-4’” 

+ b[l + (1 -Ei)ee”“]}, 

I,(O) = 17(O) 

- 1 _ (l_& _sZ)e-4’0 ~~z~(~s)e-2’” 

+ ~~(l--s,)B(Ts)e-~‘” 

+ b[l + (l-E,)e-““1). 

Here 

b=2 
s 

lo B[ T(d)]e- “’ dt’. 
0 

(28) 

(29) 

(30) 

The radiative fluxes on the boundary surfaces can be 
represented as : 

s 1 

q+(r,) = 2rr /~I(703 /4+ g nll(7ok 
0 

s 

0 

q-(7,) = 2n 1470, I.lkb = - xl,(7,) 
-1 

= -$dvs) + PJ,(70)1, 

s 

1 
q+(o) = 2R MO, p)dp 

0 

2 ~[~,Ws) + P,~,(O)l, 

s 

0 

q_(O) = 271 pI(O, p)dp z - n1,(0). 
-1 

The resultant fluxes are 

(31) 

= -“‘:2[&W - (t(S,,)]. _ 1 
where the quantities I,(r,) and I,(O) are assigned by 
relations (28) and (29). 

If the medium is transparent and the temperatures of 
the surfaces are TT1 and Ts2, we arrive at the well- 
known relationship [3,4] : 

or, when ~~(i= 1,2) is independent of the wave length, 
to 

Gr$, - ‘7%) 
4=--~-- ~~~ 

11’ ~-+ _-] 
t: 1 1’2 

In the case of a light-diffusing medium without 

reflection on the boundary surfaces, equations (22) and 
(23) go over into: 

and 

T = T 0 1 _ R2 e-2kro 

(34) 

These expressions coincide with the familiar equa- 

tions for the transmittivity and reflectivity of a plane 

layer which were derived for a homogeneous case with 
disregard of the reflecting boundaries [7]. In the 

general case, the reflectivities of the layer, R, and R,, 
differ from each other. The reason for this is the 
difference between the reflection coefficients of the 

right and the left surfaces. They coincide at pi = pZ 
= p. 

The emissivities of the layer, E, and E,, do not 

coincide even if pr = pZ, because in the case of 
arbitrary temperature distribution in the layer 
$i # &. The only exception is the case of temperature 
distribution symmetrical with respect to the middle of 

the layer, when the condition B(7) = NT, -- TC) is 

satisfied. Then 

i 
‘(’ & = & = 4 = k &T’)e lir dT’, (35) 

-0 

Eoi = ]DR [l - piR - (R - pi)e -liro]c$. 

(i= 1,2) (36) 

while at p1 = p2 = 0 

In the isothermal case, when B(r) = B. = const, 
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c$ = (1 - e-lrro)Bo, (38) right, and 

E,i = + - piR 

- (R - pi)e-k’o](l - e-k’o)B,, (39) 

E = (1 - R)(l - e-k70)B0 

1+ RemkTo ’ 

The quantity 

E = E/B, (41) 

is, according to [7], the emissivity of a homogeneous 
two-phase medium. By analogy, the quantities 

Q = E,,/B, (i = 1,2) 

may be assumed to be the emissivities of the layer from 
the right and from the left side with allowance for the 
reflection properties of the boundary surfaces. 

Equations (12) make it possible to determine the 
thermal efficiency of screens, $. The quantity $ is one 
of the basic ones used in thermal engineering to 
calculate the temperature of the combustion products 
at the exit from the furnaces, the furnace cooling 
conditions, etc. [14]. This parameter is determined by 
the difference between the radiative fluxes on the 
boundary surface related to the flux impinging on the 
surface. Assuming that radiation is emitted entirely in 
a diffuse manner, that the properties of the boundary 
surfaces are similar and that the temperature distri- 
bution is symmetrical with respect to the middle of the 
layer, we obtain 

$ = (1 - PV 
T-CT’ (42) 

Here 

E= 
(1 - RM 

1 - pR + (R - p)emkTo 

and 4 is determined by (35). 
To simplify the practical calculations it is customary 

in many problems of radiative heat transfer to replace 
the non-isothermal layer by a certain hypothetical 
homogeneous layer with the effective temperature of 
the layer T,,,. In elementary cases these are the 
arithmetic or geometric means. The results obtained in 
this paper allow a most correct incorporation of T,,, 
with regard for the optical properties of the medium 
and of the boundary surfaces. To do this, it is sufficient 
that B(T,,,) be substituted for B, in the equations for 
the isothermal case and these equations be equated 
with those for a nonisothermal layer. Then in the 
general case we will have 

U-PIRM~ - (R-&b emkro 
B(T1eff) = [l _plR_(R_pl)e-k’o](l _e-kro) (43) 

for calculation of the radiation flux emitting to the 

0 - P&#Q - CR - ~2)4~ emkro 
B(T2eff) = [l -p2R-(R_p2)e-k’o](l_e-k’O) (44) 

for the radiative flux emitting to the left. It is quite clear 
that in the case of arbitrary temperature distribution 
within the layer, the effective temperatures used in 
calculation of radiation directed to the right and to the 
left are different. In the case of temperature distri- 
bution symmetrical with respect to the middle of the 
layer, the effective temperatures are equal : 

k 

s 

co 

= 1 B(r’)e- kr’ dr’. (45) o 

For a grey medium, i.e. when K and u are independent 
of (or weakly dependent on) the wavelength 

T,rf = { & jr T4(r’)e-“’ dr’}1/4. (46) 

The dependence of T,,, on the optical properties of 
the medium and on the function of temperature 
distribution over the layer, T(t), was analyzed in detail 
for a purely emitting medium (k=2) in [12]. 

The specific calculations of equations (20) and (21) 
have been made for a homogeneous medium (T 
= const) and for two cases of a non-isothermal 
medium 

and (47) 

T* = T*(r) = T,, ear. 

While T”(r), being the axisymmetrical temperature 
profile, is quite frequently realized in practice, T*(r) 
has been incorporated as an extremely possible case to 
estimate the uncertainty introduced by the proposed 
approximate method. The calculations were carried 
out at T‘$: = 3OOK, T,, = Ti, = 300, 500, 1000, 
15OOK,r, = 0.1 + 10, i, = 0.1,0.5,0.9,0.99, pi = p2 
= 0 and pi = 0, p2 = 0.5. The accurate values of (20) 
and (21) were determined by the iteration method, 
with their approximate values being taken for the first 
iteration. For the homogeneous case, the accuracy of 
the expressions for Ei (i = 1,2) is 5 1% at 7,, 2 1 and ). 
N 0.5 and is worse ( N 15%) at ), = 0.99. In the presence 
of a reflecting surface (p2 = 0.5) the calculation 
accuracy for the transmitted radiation remains almost 
the same, and is improved in the case of ‘reflected’ 
radiation. Thus, for re = 2 and iL = 0.99 the accuracy is 
only 2.9%. In the case of the first temperature profile, 
calculation of the layer radiation at 3. 5 0.5 leads to the 
error of about 20-25%, but it decreases sharply with 
the increase of the probability of quantum survival i,. A 
similar dependence is also observed for the other 
temperature profile. The table gives the intensities of 



Table 1. Accurate (a) and calculated (app) [by (20) and (21)] values of the intensity of radiation emitting from the layer for the 
temperature profile T” = F’(T) at T,, = 300 K. T,, = 1500 K, p, = 0 and o2 = 0.5 

j. 

50 

0.5 
1 
2 
4 
6 

10 

I,(Q) i2(01 

0.5 0.9 0.99 0.5 0 9 ;> 99 

a aPP a aPP a “PP ;i aPP ‘I “PP il L’PP 

79.8 52.3 20.7 13.3 2.23 1.42 40.x 39.9 12.6 11.1 1.4: I?! 
130 100 38.7 29.9 4.44 3.42 41.1 43.2 17.5 17.0 2.21 2.09 
199 173 6.97 6.29 8.98 8.19 28.0 26.7 20.2 JO.3 3.27 3.29 
280 265 115 114 17 7 18.4 10.3 7.41 16.1 15.0 4.44 4.59 
329 323 146 150 25.5 28.1 4.40 3.01 10.6 x.94 4.95 5.11 
385 391 187 201 38.2 44.7 1.78 1.52 4.3 1 321 4.95 4.93 

radiation from the layer for this case in the presence of 

a reflecting boundary surface. Note that this case is 
extreme for a real experiment. 

As expected, during calculation of the transmittivity 

T (22) the approximate relationships start to give an 
appreciable error as early as at T” > 1. Although it 

decreases with the increase of I, these relationships 
cannot be used at 3. = 0.99 and 70 > 4. But at these 

values of 70, the function T(s,) becomes very small. 

When determining the values of Ri(i = 1,2) (23), the 
error, according to (20) and (21), amounts to - 10 

15% and becomes almost twice as large at z0 s 0.1. 

4. ANGULAR DISTRIBUTIOIV OF THE LAYER 
RADIATION INTENSITY 

The initial radiation transfer equation can be repre- 

sented for a plane two-phase layer as 

2 ;[I&) + I,(t)] + (1 - i.)B(T). (48) 

where I,(T) and I*(z) are specified by relationships (12). 
This equation has the following solution : 

I(s, p) = I(0, p)e ’ ” 

;.A, 
f-- 

2(1-k/i) 
(e-k’ - e-“I’) + i H,(qp) 

+ __‘:A!_._._ [,-kh-1) _.. ,-(~ii-~l I”‘] 

2(1-klvl) 

where 

The constants A,(i= 1.2) defined by the boundary 
conditions are determined from (I?) and (18), and 
Qi(7), from (11). The functions ii(r.p) are of the same 
nature as ai( With the function known, calculation 
of these integrals presents no special problem, It is 

different with H,(r.p) (i= I, 2). since thcsc al-t: the 
double integrals. The double integrals as in (52). 

however, can be reduced to the sum of the functiona 
ii(r,p(). Consider the first integral of the function 

H,(r.p). Since 

d”, k 1”’ B(7’)em”” -7j dt’ 

* i 
“T,> 

= k’ 
i 

B(7’)e Ir’- r’ dr’ 
. T 

&k 
r 

7 
B(T’)em~k”mr 1 d7’ 

Y 0 

= -kZ 
r 

B(7’)c i’r ” dl 
.n 

__ kB(7). 

+ UQT), 

T’i dT” 
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s ro 

X qz”)e-k(r”-“) &” 

r’ 

or 

The remaining three integrals of the functions 
H,(r,p) (i= 1,2) can be found in a completely anal- 
ogous way. After substituting the relations thus ob- 
tained for H,(t,p) into equations (2) and (3) and 
performing simple transformations we obtain the 
equations for the radiation distribution within the 
medium 

0,~) = 1(O,~)e-“’ + Q(~,P), P>O 

Z(5,p) = Z(70,p)e-""-'"lp~ + u2(z,p), P co, 

where 

3, 

ul(T,P) = 2(1 + k/p]) 
[A,(1 _ e-~r)e-*M 

+ %(T) - & e+pl + til(7,~)l 

2 

+ 2(1 -+I) 
[A,(1 _ e-yr)e-kc 

+ @z(T) - $i(V)] + ‘d ‘k~(z,P). 
klpl 

1, 
uz(z’p) = 2(1 _ klp() i&Cl - e -y(ro-r, 

1 

2 
+ @l(7) - $zhP)~ + 2(1+k,p,) 

x {Az[l - e 

(53) 

(54) 

(55) 

ro-T 

- 42 e-r + 11/2(7,~) + $'f$2(cc). (56) 

For radiation emitting from the medium we find 

I@,, P) = I(O, p)e-‘oir + V,(P), P > 0, (57) 

and 

I(O,P) = 470,/4)e-'"'lp' + V2(p), 

where 

P < 0, (58) 

V,(P) = ~,(~o,P) 

-he -ro”r’ + IcI1(P)l + 2(1 yklpl) 
1 -klwl 

x [A,(1 - e --i;T-To)e-kro + dz - til(P)] 

14. 
+ j@ $1(P)> (59) 

V,(P) = k(O?P) 

= 2(1 _‘&) [A,(1 - e-~~~)e-t~o 

3, 
+ 41 - tiz(PL)I + 2(1 + k,pl) 

1 +kllrl 
x [A,(1 - e _T’“) _ & e-‘o!IPI 

+ UP)] + 1-3. $2(P)> 
+I 

(60) 

$1(P) = ~1(7o,k4 $2(p) = $2(0,/d. (61) 

Let us discuss determination of I(0, p) IP ,. and 

I(ro, P)( p<o figuring in equations (57) and (58). When 
there is no reflection from the boundary surfaces, 
according to the boundary conditions for equation (I), 
we obtain 

I(O,P)(,>O = SI(P) 

and 

I 

(62) 

0O,P)lP<O =92(/G 

When the laws of radiation reflection on the boun- 
dary surfaces are specified, the values of I(0, p) I e ,. and 

&o>!~)j,<o are determined by rather a complicated 
system of integral equations. However, their de- 
termination can be considerably simplified by assign- 
ing the Lambertian or specular reflection laws. Thus, 
in the case of a diffuse radiation reflection from the 
boundary surfaces we find 

s 

0 

~,(P,P')~(O,WP' 

-1 

I 

0 

= Pl 4O,0W = ~112(0), 

-1 

s 

1 

r2(~~d)G030W 
0 

s 

1 

= P2 I(~o,P')~P' = PZ~,(~O), 

0 

in which I,(O) and II are determined by (20) and 
(21). The solution ofequation (1) can then be presented 
as 

I(& P) = IS,(P) + Pl~Z(O~l 

x tip + u,(t,p), P > 0, 

I 

(63) 
I(?P) = [92(P) + Pz~,(to)l 

x e-(ro-r)ilpb + v,(~,p), p < 0. 

If the law of specular reflection from the boundary 
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FIG. 1. Angular distribution of radiation emitting from an inhomogeneous layer for different temperature 
profiles [solid curves, exact calculation ; dashed curves, calculation by equation (15)] : 2. = 0.5; ij, = /jL = 0; 

(a) T = const; (b) T = T”(z); (c) T = ‘P’(r); (1) ~~ = 0.1; (2) 0.5 ; (3) 1.0: (4) 6.0. 

surfaces is prescribed, then 

I(O,P) = SI(P) + Pl 

x [I@,, --p)eC'~'~" + V,(-p)], p > 0. 

hP) = SAP) + P2 

x [I(O, -p)e-‘“!iel + V,( -p)], /_I < 0. 

From this, allowing for V,(p) = V,( -p) and V,(p) = 

V,( -p), we obtain 

Q0,4>0 = 1_ [),,; e-(2r”,,L 

iUl(P) + P1[Y2(-PL) + P2~1(PL)l 

x e-‘“‘p + plV2(p)), (64) 

l-x (a) 

0.8 

4 
0.6 / \ /' 

The data, obtained by calculating the angular 
distribution of the emergent radiation according to 
relationships (57) and (58), are presented for the above 
initial parameters in Figs l-4. Solid lines in these 
figures present the results of direct numerical in- 
tegration of the radiation transfer equation. It can be 

seen from the figures that the error introduced by the 
approximate method amounts to 5’/,,. It increases up to 
20-25;: for the layer of a small optical thickness (rO 
< 1) with the longitudinal distribution of temperature 

FIG. 2. Angular distribution of radiation emitting from an inhomogeneous layer for different temperature 
profiles [solid curves, exact calculation; dashed curves, calculation by equation (15)] : i. = 0.5 : J>, = O,JJ~ 

= 0.5; (a) T = const; (b) T = T”(s). 
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FIG. 3. Angular distribution of radiation emitting from an inhomogeneous layer for different temperature 
profiles [solid curves, exact calculation; dashed curves, calculation by equation (15)] : on the left side T = ~a, 

on the right side r = 0; T = Tb(7); pt = 0, p2 = 0.5; (a) I = 0.5 ; (b) 0.9; (c) 0.99. 

Tb = Tb(r) (Fig. 3), but rapidly decreases with the 
increase in T,,. The degree of anisotropy in the angular 
distribution of radiation emitting from the layer 

I(%, 1) W, - 1) 
r1 =I(z,,o) Or r2 = 1(0,0) 

(66) 

depends strongly on the value of the quantum survival 
probability as well as on the temperature profile form, 
optical properties of the medium and of the boundary 
surfaces. A decrease in the probability of quantum 
survival and an increase in the optical thickness 

predictably results in a lower degree of anisotropy. It 
should be noted that in the considered cases of 
temperature distributions there is a pronounced effect 
of radiation ‘blockage’, i.e. ‘hot’ radiation is screened 
by the cold layers of the medium under study. This 
effect is the stronger, the larger the optical thickness of 
the layer or the larger the viewing angle. 

5. CONCLUSIONS 

Comparison of the data calculated by the developed 
approximate method with the accurate results shows 

(a) 
I (b) 

190 -- 

400 
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300 k254 ‘” 
200 2 z 

I .L 
loo-- A 

FIG. 4. Angular distribution of radiation emitting from an inhomogeneous layer for different temperature 
profiles [solid curves, exact calculation ; dashed curves, calculation by equation (15)] : T = Tb(7); p, = 0, pz 

= 0.5; (a) 1. = 0.5; (b) 0.9; (c) 0.99; (1) 7. = 2; (2) 4.0; (3) 10.0. 
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that it is possible to use the obtained relationships (I 2). 

(20) and (21) for a wide range of variation of para- 

meters with an accuracy adequate for practical pur- 

poses. These relationships have an obvious physical 

sense. The presence of reflecting boundary surfaces 
reduces the error of the method. The equations 
reported in literature for the layer radiation character- 

istics follow from the general relationships as specific 
cases. The analysis of the emissivity of an inhomo- 

geneous two-phase layer made it possible to correctly 
introduce the effective temperature which depends on 

optical properties of the medium and the type of 
temperature distribution over the layer. An equation is 

also obtained for the thermal efficiency of screens, 
which plays a major part in thermal engineering 

calculations. 
Relations (57) and (58) make it possible to analyze 

the directed emissivity of an inhomogeneous two- 
phase layer for any temperature profile depending on 
optical properties of the medium and of the boundary 

surfaces. Specific calculations of these relations in- 

dicate their good accuracy even in the case of a very 
sharp temperature gradient, T = Tb(t). The degree of 

anisotropy of the angular distribution of radiation 
emitting from the layer depends strongly on the 

probability of quantum survival, optical thickness of 

the layer and the type of the temperature profile. It 
should be noted in conclusion that on utilizing the 

convention that radiation is emitted entirely in a 

diffuse manner and then assuming that p = l/2 in (57) 

and (58), one can obtain the direction-averaged in- 

tensities of radiation from the layer. These equations 
are more accurate than (12) and can be used for a more 
accurate determination of radiation fluxes as well as of 

the thermal efficiency parameter of screens, $1. 
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PROPRIETES RADIATIVES D’UN MILIEU PLAN 
DIPHASIQUE ET NON HOMOGENE 

RCumP --On dCveloppe une mithode approchie pour calculer l’intensltt et les flux de rayonnement pour unc 
couche diphasique non homogtne avec des frontieres Cmissives et rtfllchissantes. En utilisant l’intdgration 
numerique de l’tquation de transfert radiatif, la prCcision de la methode a Btt vtrifiCe pour un large domaine 
de variation des parametres initiaux. On prCsente une dtfinition g&n&ale de la templrature effective de la 

couche. 
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UNTERSUCHUNG DER STRAHLUNGSEIGENSCHAFTEN EINES EBENEN 
INHOMOGENEN ZWEIPHASENMEDIUMS 

Zusammenfassung- Es wurde eine Nlherungsmethode entwickelt zur Berechnung der Strahlungsintensitat 
und der Strahlungsdichten an einer inhomogenen Zweiphasenschicht mit emittierenden und reflektierenden 
Grenzflachen. Unter Verwendung numerischer Integrationsverfahren fur die Gleichung des 
Strahlungsaustausches konnte die Genauigkeit der Methode fur einen weiten Variationsbereich der 
Ausgangsparameter festgestelh werden. Es wird eine allgemeine Definition fur die effektive Temperatur der 

Schicht vorgeschlagen. 

MCCJIEAOBAHME XAPAKTEPMCTHK H3JIY’IEHHR HJIOCKOii HEOjIHOPOAHOH 
JIBYX@A3HOH CPEAbI 

Atmo-rauns - Pa3pa60TaH npH6WKeHHbIti MeTOiI paC%Ta HHTeHCABHOCTI( M nOTOKOB H3JlyWHHfl. 

BbIXOLV4U,CrO W3 HeOllHOpOilHOrO ilB)'X@l3HOrO C."OIl C 113n,'~aIO",HMW B OTpa~a,CU,HMM rpdHWlHblMH 

noeepxnocrsMri. C noh4ombio ~ricnetmoro rinrerpriposanmi ypaetiemis nepeuoca ri-Jnyqemin onpene- 
neua ero TOVHOCTb DJIS luapoKoro miana30Ha 83MeHeHUR ACXOnHbIX flaHHb,X. npHBe;leHO 06qee 

onpenenemie s~@eKTeeHo~ rebnieparypbi cnoa. 


