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Abstract—An approximate method for calculating the intensity and fluxes of radiation from an

inhomogeneous two-phase layer with emitting and reflecting boundary surfaces has been developed. By

using the numerical integration of the radiation transfer equation, the accuracy of the method has been

ascertained for a wide range of variation of the initial parameters. A general definition of the effective
temperature of the layer is presented.

NOMENCLATURE

I, = I(z, u), radiation intensity at point 7 and
in direction #=arc cos u;

B, = (1/n)o,T*, Planck radiation iniensity
for the temperature T = T(1);

G0, Stefan—Boltzmann’s constant ;

S, = S(1), function of radiation sources;

K,0, absorption and scattering coefficient,
respectively;

o, =K+a0, coefficient of  medium
attenuation;

2, = o/(k+a), probability of quantum
survival ;

g1(u),g-(u), intensity of radiation incident on the
left and on the right side of the medium,
respectively;

Tgq,ri(u, 1), temperature and reflection
coefficient of the left boundary surface,
respectively;

Tg,,r(u, 1), temperature and reflection
coefficient of the right boundary surface,
respectively ;

E,,E,, emissivity on the left and on the right side
of the inhomogeneous layer, respectively;

R, reflectivity of the semi-infinite two-phase
layer;

R,,R;, reflectivity on the left and on the right side
of the inhomogeneous layer, respectively;

T, transmittivity of the layer;

0<x<x, layer thickness;

x

OST.—:J‘
0

optical thickness of the layer.

X0

a(x)dx <1y = J afx)dx,

0

1. INTRODUCTION

INCREASING intensification of heat-power engineering
equipment places more stringent requirements on the
accuracy of solution of heat- and mass-transfer pro-
blems, including those of radiative heat transfer.
However, incorporation of the real properties of a
heat-transfer agent (which, in the general case, is a
mixture of molecular gases and particles) and of the
working chambers makes the mathematical statement
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of the problems much more involved (see, for example
[1-4]). Modern electronic computers enable one to
analyze any problem of radiation transfer in plane
two-phase inhomogeneous media. Even so, the de-
velopment of approximate methods for calculating the
luminescence characteristics of inhomogeneous two-
phase media has remained to be one of the most
pressing problems to date. The results obtained using
these methods can be employed to develop algorithms
for computing more complex problems and to carry
out a host of engineering calculations for establishing
certain regularities in the modern technological
processes.

The existing literature on the study of radiation
transfer in inhomogeneous two-phase media com-
prises a large number of publications [ 1-6]. However, all
of them present the solution of the radiation transfer
theory problems only for particular situations possible
in practice. In [7, 8] the method has been suggested for
treating homogeneous two-phase systems, which con-
sists in approximate determination of the function of
sources with subsequent direct integration of the
radiation transfer equation. This method allows one to
obtain analytical equations of the emissivity not only
for plane, but for spherical and cylindrical two-phase
media. Comparison of these calculations with the
results of numerical integration of the radiation trans-
fer equation [6] demonstrates that the accuracy of the
developed method within a wide range of optical
characteristics of the medium and of the experiment
conditions is adequate for its practical application.

In the present paper this method has been extended
to a most general problem of the theory of radiation
transfer in plane two-phase media, such as pro-
pagation of radiation in an inhomogeneous medium
with emitting and reflecting boundary surfaces. The
sole simplification is the assignment of the same
function of position for the absorption and scattering
coefficients, which results in the constant value of the
quantum survival probability. But if we discard this
simplification and introduce a certain effective quan-
tity (as is done in the present paper for temperature),
then the method suggested can be used for a wide class
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of problems.

The paper analyzes hemispherical and directed
characteristics of radiation emitting from a layer as
functions of the optical properties of the medium and
the boundary surfaces and also of the temperature
profile. The results obtained by this method are
compared with those obtained by numerical solution
of the transfer equation for the given problem. The
comparison has shown that the method is accurate
even in the case of exponential temperature approxi-
mation over the layer.

When the condition of local thermodynamic
equilibrium is satisfied, the radiation transfer equation
can be written for the studied problem [1,9] as:
dl(z, )

—— + {1,
g (T, 1)

u

5 1
= ; J I )y + (1=2)B(n). (1)
~1

In this equation the scattering function for a volume
element of the medium is assumed to be spherical. The
anisotropism of scattering [ 10] can be quite accurately
allowed for by representing the scattering function as
follows :

plp i) = a + 2(1 —a)o(u—y), (2)

where «a is the doubled hemispherical fraction of the
backward scattering. The above representation (2)
reduces the solution of the anisotropic scattering
problem to the isotropic case, i.e. to the solution of
equation (1) with ac formally substituted for o.

The boundary conditions for the stated problem
are:

) N
10, 4) = gy () + {. Fy (s 10, p)d
J -1
>0,
L {3)
i
I{to, ) = go(p) + [ ralps WM (2o, ' )dpd
v O
<0, j

Here the functions g,(u) (i = 1,2) determine both the
radiation from the outside and the emitted radiation of
the boundary surfaces, ¢, B(T;) (¢; is the emissivity of the
boundary surfaces). The reflection coefficients, r,{u, 1),
for the Lambert reflecting surfaces are constant
quantities

rdu i’y = ro; = const(i = 1,2), (4)

and in the case of specular reflection these are

W

Filpa ') = ro; - o(p — 1), (
where 6 is the delta function.
2. APPROXIMATE METHOD FOR SOLUTION
OF EQUATION (1)

Integrate equation (1) with respect to y, first within
[0, 17 and then within [ —I,0]. The familiar Schuster—
Schwarzschild approximation [1, 11].

M 1

1
(e, pydp =

0 .

Hr w)dp,

[}

o/

"o l ~0
wliz,pydp = ~ ; i f{t,1)dpu
i 3

- P
v

yields a system of two differential equations:

] dll(’[) 7
2 d ThO |
, R
=5 [1,(t) + Li(n)] + (1 - 2)B(1), ‘
| dly) ;; {6)
P18 i
Ty g RO |
= 2000 + L] + (1= DB,
in which

1
L) = [ Iz, wdp
0

v

1
and > (7)
j

The assumption that
K=al=2), Jo)=It+ 1)
and
Flry=1,1)— 1:(1)
gives

dZ
71{? — k¥J(1) = —2k*B(7). (8)
T

The solution of (8) is
J(r)= A e M0m0 ¢ 4 e7F
+ ®(t) + @y(r).  (9)
; k —kt k(zy--1
P(r)=§[A2e — A, e oo

=@y (7) + By(1)].

Pi(7) = kf B(r')e " 0 dr,
: (11)

q)zm:kf B(t)e " dr’. J

0

(10)

where

From this, the quantities [ (t) and I,(z), which are the
average (over the hemispheres) radiation intensities,
can be easily obtained
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I(t) = a,A, e 079 L @, 4,67
+ a,®,(1) + o2, ®,(7),
1@1(7) + 2, P(7) a2)
I(t) = ayA, e 7 o0, 4,67
+ o, @, (1) + 2y @,(7),
where
0, =32 -k), a,=%2+k).
The constants A, and A, can be found from the
boundary conditions (3)

1L,(0)= J 10, wdp = G, + p112(0),
0

(13)
0
I,(zo) = f I(zo, ) = G, + p,1,(1),
-1
where
1 1]
G, =j gi(wdy, Gy = J ga(u)dp, (14)
0 -1
1 1 (4]
= ry(p, )0, p)dpdy,
T Lo j J :
(15)

1 o
P2 J‘ J rop, i (1o, p)dp dys’

h Ii(to) J-1 Jo

The quantities p;(i =1,2) are certain effective re-
flectivities of the boundary surfaces.
Using the conditions (13) and also the relations

®,(0) = ¢4, ®,(t0) =0,

(16)
®,(0) =0, D,(t0) = ¢,
we obtain

1

A, = B{Gz(l + R)(t — p1R)
—Gy(1 + R)Y(R — ple™™
— (R = py)(1 = pyR)¢,
+ (R = p)(R — pr)p; e}, (17
1

A4, = B{Gl(l + R)(1 — p,R)
—Gy(1 + R)Y(R — pyle™™°
— (R —p)(1 — p2R)9,
+ (R = py)(R — pr)pye™ "}, (18)

where
D=(1-pR)(1 - p;R)

_ _ _ — 2kt
(R pl)(R pl)e s (19)
_a_,_2—k_1—\/(1—l)
Ty, 24k 1L+ JA-=4)
The quantity R has the meaning of the reflectivity of a
semi-infinite layer [7].
The solution obtained gives a complete determi-
nation of the values of I, () and I () at any point of the

medium. In a majority of practical problems, radiation
from the medium is of fundamental interest, so we shall
consider the quantities I,(to) and I,(0) in more detail.
Substituting (17) into (12) and performing simple
transformations, we obtain

1,(to) = E; + TG, + RyG,, (20)
1,0) = E; + TG, + R,G, (21)
where
1
T = = (1—R?)e "+, 22
5(1-R%e 22)

1
R =5 [RU-piR) = (R=pe™*]i=12),  (23)

1—

R
Ey = ——[(1=psR)$2 = (R—p1)bs e™"], l

b (24)

1-—

B = R [0 paR)0, — Rpa)iy e, ]

It can be easily seen that T defines the layer
transmittivity, R, and R,, the layer reflectivity on the
left and on the right side, respectively, and E, and E,
define the contributions of the internal sources to the
emission of radiation from the right and from the left
side, respectively. However, according to the boundary
conditions (3) or (13), relations (20) and (21) determine
the emission of radiation to the reflecting boundary
surfaces. Consequently, the emission of radiation from
the layer will then be determined by the quantities
(1=p) ((zo) and (1 — p,)I,(0). It should be noted that
G, and G, define the radiative flux which has already
passed through the boundary surfaces and is imping-
ing directly on the layer under study. Therefore, if the
intensities of radiation, G’ and G5, impinging on the
layer from the outside are prescribed in the problem,
then G; = (1-p,)G| and G, = (1-p,)G5.

Thus, the obtained quantities (22)—(24) are charac-
teristics of the layer itself, bound by the partially
reflecting surfaces. Characteristics of the layer together
with the reflecting walls are defined as (1—p,)T,
(1—p2)R,, (1—p,)E, for the emission of radiation to
the right and as (1—p,)T, (1—p{)R,, (1—p,)E, for
radiation leaving the left-side surface.

3. ANALYSIS OF PARTICULAR CASES
In the case of purely emitting media equation (1) has
an exact solution [12]:
Iex(1>#)|u>0
1

1= PPy € 2oM {bs + &,B(Ts;)e ™"
1

+ pre oMb + &, B(Tsy)e ™M}, 25)
I**(0, ) <0
1
et + BT
+ pye”M[b; + & B(Tsy)e "]}, (26)
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where

10 Cdr ~N
b} =f Br)e " m

0 H 27
T . d ’

b, = J‘ B(t)e o i
0 u

In order to carry out the averaging of the quantities
{25)and (26) over the angles, we shall avail ourselves of
the stipulation utilized in [6,7, 12]. It is this : direction-
averaged intensity of radiation from the medium is
equal to the intensity of radiation emitted by the
medium at the angle 6 = 60° (u = 1/2) about the
normal to the layer. This condition holds strictly in the
case of radiation propagating in a diffuse manner [ 13],
while in [6,7] it is shown that this condition is also
valid in calculation of the luminescence characteristics
of two-phase media. Having applied it for (25)and (26),
we obtain the expressions which exactly coincide with
(24). Assuming that T(r) = T(r,—1), i.e. that the
temperature distribution is symmetrical about the
middle of the layer, and that ¢, = ¢,(Ts) = 1—p, and
g, = &{(Ts) = 1—p,, we find

I(to) = IT(z0)
1

{e,B(Tg)e™*

+ b1 + (1—¢ )e¥]}, (28)

15(0) = I5*(0)
= -——-_.__‘1~_—‘ ‘8 B(T )evltn

L= (=e)(I—gple *o 27F

+ &,(1—&,)B(Tg)e ™ *™

+ B[l + (1 —ey)e 2]} (29)
Here

b=2 J B[T(x)]e™*" dv. (30)
o}

The radiative fluxes on the boundary surfaces can be
represented as:

" N
g7 (1) = 2“J wl(zo,p)dp =l (zo),
0
]
4 (to) = 2m J pl(to, whdp = —nly(zo)
-1

= —n[e,B(Ts) + po1,(10)],

q*(0)= 27rf

0

> (3D

1

w10, dp

= nfe; B(Ts) + p 1,(0)],
(4]
q7(0)= ZnI w0, pydp = —nl,(0).

—1 J

The resultant fluxes are

I

q,

q*(0) + g7 (0)
= e, [ B(Ts) — 1,(0)), 1

~ {32)
42 = q" (1) + g (14) [ ‘

= — 7, B(Ts) — 1(14)],

where the quantities I,(z,) and /,{0) are assigned by
relations (28) and (29).

If the medium is transparent and the temperatures of
the surfaces are Ty, and Tg,, we arrive at the well-
known relationship [3,4]:

= n[Bigl) — B(T‘Z)] (33)

S

or, when ¢(i=1,2) is independent of the wave length,
to

U(Tgx - Tzz)
g =

In the case of a light-diffusing medium without
reflection on the boundary surfaces, equations (22) and
(23) go over into:

3 (1 - RZ‘JC-—kw

T = T, = oo
0 1 — RZe 2k
and (34)
R(l . e—-Zkto)
Ri=Ry=Ro="""23 .

These expressions coincide with the familiar equa-
tions for the transmittivity and reflectivity of a plane
layer which were derived for a homogeneous case with
disregard of the reflecting boundaries [7]. In the
general case, the reflectivities of the layer, R, and R,,
differ from each other. The reason for this is the
difference between the reflection coefficients of the
right and the left surfaces. They coincide at p; = p,

The emissivities of the layer, E, and E,, do not
coincide even if p, = p,, because in the case of
arbitrary temperature distribution in the layer
¢, # ¢,. The only exception is the case of temperature
distribution symmetrical with respect to the middle of
the layer, when the condition B(t) = B(t, — 1) is
satisfied. Then

br=bs=b—k| Brrtar (9
v 0

1-R .
Eo; = T[l ~piR— (R —ple* *lo,

(i=12) (36)
while at p; = p, =0
(1 - R)¢
Egy =Egy=E = |+ Re ko (37

In the isothermal case, when B(t) = B, = const,
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¢ =(1—e™")B,, (38)

1-R
Ey = —D‘[l - piR
— (R = pe ™°](1 — e *)B,, (39)

(1= R)(1 —e™*)B,

40
1+ Re ko (40)

The quantity

is, according to [7], the emissivity of a homogeneous
two-phase medium. By analogy, the quantities

g = Eo:/By (i=1,2)

may be assumed to be the emissivities of the layer from
the right and from the left side with allowance for the
reflection properties of the boundary surfaces.

Equations (12) make it possible to determine the
thermal efficiency of screens, . The quantity y is one
of the basic ones used in thermal engineering to
calculate the temperature of the combustion products
at the exit from the furnaces, the furnace cooling
conditions, etc. [ 14]. This parameter is determined by
the difference between the radiative fluxes on the
boundary surface related to the flux impinging on the
surface. Assuming that radiation is emitted entirely in
a diffuse manner, that the properties of the boundary
surfaces are similar and that the temperature distri-
bution is symmetrical with respect to the middle of the
layer, we obtain

_(1—-p)A
VETra “2)
Here
_(l=p _l—e"“"
A‘( G p )E
(1 - R)¢

T1—pR+ (R—p)e *o

and ¢ is determined by (35).

To simplify the practical calculations it is customary
in many problems of radiative heat transfer to replace
the non-isothermal layer by a certain hypothetical
homogeneous layer with the effective temperature of
the layer T, In elementary cases these are the
arithmetic or geometric means. The results obtained in
this paper allow a most correct incorporation of T
with regard for the optical properties of the medium
and of the boundary surfaces. To do this, it is sufficient
that B(T) be substituted for B, in the equations for
the isothermal case and these equations be equated
with those for a nonisothermal layer. Then in the
general case we will have

(1—p1R)$, — (R—p)d, ek

B(Tleff) = [1 _le_(R_pl)e—kto](l __e—kl'g)

(43)

for calculation of the radiation flux emitting to the

right, and

_ (1=p2R)¢, — (R—p3)¢ e ke
B(Tzeff) - [1 _sz_(R_pz)e—kzo](l__e—km) (44)

for the radiative flux emitting to the left. It is quite clear
that in the case of arbitrary temperature distribution
within the layer, the effective temperatures used in
calculation of radiation directed to the right and to the
left are different. In the case of temperature distri-
bution symmetrical with respect to the middle of the
layer, the effective temperatures are equal:

BTa) = 1

—kto

k o
—_ N\ —KkT’ ’
= ‘m J‘O B(T )e dT . (45)
For a grey medium, i.e. when k and ¢ are independent

of (or weakly dependent on) the wavelength

k o ,
Teff = {——1 - J‘ T‘(t')e_kt d‘tl}”‘. (46)

The dependence of T, on the optical properties of
the medium and on the function of temperature
distribution over the layer, T(r), was analyzed in detail
for a purely emitting medium (k=2) in [12].

The specific calculations of equations (20) and (21)
have been made for a homogeneous medium (T
= const) and for two cases of a non-isothermal
medium

T*=T(t)=T, exp[-a(t - %’)2]

T = Th1) = Ty, €™

and 47)

While T°(r), being the axisymmetrical temperature
profile, is quite frequently realized in practice, T(t)
has been incorporated as an extremely possible case to
estimate the uncertainty introduced by the proposed
approximate method. The calculations were carried
out at T% = 300K, T, = T%, = 300, 500, 1000,
1500K,7, = 0.1 + 10,2 = 0.1,0.5,0.9,0.99, p, = p,
= 0and p, = 0, p, = 0.5. The accurate values of (20)
and (21) were determined by the iteration method,
with their approximate values being taken for the first
iteration. For the homogeneous case, the accuracy of
the expressions for E;(i=1,2)is <1%atty21and 2
~0.5 and is worse (~ 15%) at A = 0.99. In the presence
of a reflecting surface (p, = 0.5) the calculation
accuracy for the transmitted radiation remains almost
the same, and is improved in the case of ‘reflected’
radiation. Thus,fort, = 2and 4 = 0.99 the accuracy is
only 2.9%. In the case of the first temperature profile,
calculation of the layer radiation at 2 < 0.5 leads to the
error of about 20-25%;, but it decreases sharply with
the increase of the probability of quantum survival 2. A
similar dependence is also observed for the other
temperature profile. The table gives the intensities of
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Table 1. Accurate (a) and calculated (app) [by (20) and (21)] values of the intensity of radiation emmmg from the layer for the

temperature proﬁle Tt =

Tb(r ) at T\1 = 300K, T\Z = 1500K, pl =0 and /)2 = 0.5

; Ii(1p) FH{0)
0.5 0.9 0.99 0.5 09 (.94
Ty a app a app a app 4 app a app a app
0.5 79.8 523 20.7 133 223 1.42 40.8 399 12.6 1.1 142 1.21
1 130 100 38.7 299 4.44 342 41.1 432 17.5 170 2.21 2.09
2 199 173 6.97 6.29 8.98 8.19 28.0 26.7 20.2 20.3 327 329
4 280 265 115 114 17.7 18.4 10.3 741 16.1 15.0 444 459
6 329 323 146 150 25.5 28.1 440 3.01 10.6 8.94 495 At
10 385 391 187 201 38.2 447 1.78 1.52 431 321 495 491
radiation from the layer for this case in the presence of T o
a reflecting boundary surface. Note that this case is Y1 (t.p) =k | B{x)e”“ "' dr.
extreme for a real experiment. <0 {51)
As expected, dur.lng calcula.tlon qf the transmittivity Yot = k Ble)e~t i gy [
T (22) the approximate relationships start to give an ). )
appreciable error as early as at 1, > 1. Although it e
T

decreases with the increase of 4, these relationships
cannot be used at 2 = 0.99 and 7, > 4. But at these
values of 1,, the function T(z,) becomes very small.
When determining the values of R; (i = 1,2) (23), the
error, according to (20) and (21), amounts to ~ 10-
15% and becomes almost twice as large at 7, < 0.1.

4. ANGULAR DISTRIBUTION OF THE LAYER
RADIATION INTENSITY
The initial radiation transfer equation can be repre-
sented for a plane two-phase layer as
di(r, u)
p—

+ Iz,
& (T, 1)

> %[11@) + L(t)] + (1 — 2)B(1), (48)

where I,(t) and I,(t) are specified by relationships (12).
This equation has the following solution:

He.p) = 10, p)e "™

R B e"k(fn*T) _ efkr(.fru
21 +k,u)[ ]
A ) /.
+ ”i/’vlfh(‘f.ll), u>0, (49)
ku
) =l e
~klu|
7%:4‘.7;,,, [e”’“ S kto—(to—tp|ul
201+ k| )
/ 1—4
F o Hy () A+ o), p <0, (50)
2 k]

where

H,(z, p) [ [@,(t) + Dy(x /)]e“’”"””'l -
. ul

} {52)

.

o o dr
Hy(t,p) = [ [@:(7) + Dy(t))e " 7 ﬁ['

The constants A;(i=1,2) defined by the boundary
conditions are determined from (!7) and (18), and
®;(7), from (11). The functions (t, u) are of the same
nature as ®;(t). With the function known, calculation
of these integrals presents no special problem. It is
different with H(t,pu) (i=1,2). since these are the
double integrals. The double integrals as in (52),
however, can be reduced to the sum of the functions
Yilt, ). Consider the first integral of the function
H,(z, ). Since

"

d Sra )
e ko ' B(t')e o dy
dr I

‘ B(t'le * " dt — kBit).

2

k

4y

[ B(t')e k- dy
dr

v O

—k? [ B(t')e ¥ " de’ + kB(1),
Q

R

then
T X d ’ T . .
G, u)=k [ g T o ( B(t")e ¥ de”
JO |,th Jt
= J B(t')e ™ de
]
v d
Hu .
* [ ¢ le] dt’
[‘ B(t")e M T dr
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0

— J‘t B(r/)e—(r—r')/tul ﬁ
|ua]

'

0 , d
+ j B(TI)C—k(t -‘t)_‘t
. |kl

_e—l’/|M| J‘IO B(T/)e—kt' d7’
0 |H|

- L J‘t e~ 1Hlul i
|1l Jo |N|

T0
x J B(t")e ™ "~ dr”

o

or

Gilr,p) = [W1(7, 1) + @y (1) — ¢y ™7,

1+ ki |

The remaining three integrals of the functions
Hi(t,p) (i=1,2) can be found in a completely anal-
ogous way. After substituting the relations thus ob-
tained for Hi(t,p) into equations (2) and (3) and
performing simple transformations we obtain the
equations for the radiation distribution within the
medium

Iz, 1) = IO, e ™™™ + vy(z, ), p>0 (53)
I(t, 1) = I(ro, pe =07 4 v, (z, p), p<0, (54)
where
y) [A (1 7“" f)e—k(ro—r)

oy (T, p1) = m 1 Ju

+ ®,(1) — &, e Ml 4 AN

2 A1 _1-Hyl ke
+2(1_—k|/"|)[ Al —e T e
1-2
+ @,(7) — ()] + Em Yyt (55)
(1'0 )
02(1:’”) k[ l) {A [1 ]
2
+ (1) — Yro(T, p)} + 20+ K]

1+klu|
x {A,[1—e " "]+q>2)

—dre W+ Vo (t, 1) i | | t//z(r 1. (56)

For radiation emitting from the medium we find

I(zo, ) = 10, wle ™" + V (), u>0, (57)
and

10, ) = I(zo, e ™M 1 ¥y (p), #<0, (58)
where

Vi(p) = vy(to, )

A _1+kly

=m[Al(l_e el ™)

A
=to/lul -
x [Az(l - e‘l'_;‘:fﬂ“)e‘“" +¢2 —¥y(p)]
59
k| | l// (u), (59)
Vau) = 0200, 1)
j NETI
)
x [A(1 = e'lJIr:lluI 0y — ¢, e oM
+ ()] + I | l//z(ll) (60)
Yol =¥y (to, 1), Yalp) = ¥,(0, ). (61)

Let us discuss determination of [(0,p)|,., and
I(to, )|, <o figuring in equations (57) and (58). When
there is no reflection from the boundary surfaces,
according to the boundary conditions for equation (1),
we obtain

10, )| >0 = g1(1)

and (62)

I(z, #)|u<0 = g,(p).

When the laws of radiation reflection on the boun-
dary surfaces are specified, the values of I(0, u) |.>0and

I(zo, 1)|, <o are determined by rather a complicated
system of integral equations. However, their de-
termination can be considerably simplified by assign-
ing the Lambertian or specular reflection laws. Thus,
in the case of a diffuse radiation reflection from the
boundary surfaces we find

0
f ro(a @I, ')y
~1

0
=P1f
-1

1
f ra(p, WM (zo, 'Yy’
4]

1
=P2f
0

in which I,(0) and I,(z,) are determined by (20) and

(21). The solution of equation (1) can then be presented
as

10, g)du' = p,1,(0),

1(zo, W)Y’ = pol(10),

1(r, 1) = [g:(1) + p1,(0))

X e~ 4 p (T, ), u>0, 63)
I, ) = [g2(0) + p2ly(10)]

x e~ oDl 4 g (1, p), u <0.

If the law of specular reflection from the boundary
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FIG. 1. Angular distribution of radiation emitting from an inhomogeneous layer for different temperature
profiles [solid curves, exact calculation ; dashed curves, calculation by equation (15)]: 4 = 0.5; p, = p, = 0;
(a) T =const; (b) T = T*z); (¢) T = Tb1): (1) 7, = 0.1; (2) 0.5: (3) L.0: (4) 6.0.

surfaces is prescribed, then

10, ) = g,(1) + p,

x [z, —ple ™" + V,{— )], u>0,
I(zo, 1) = g2(1) + p2
x [1(0, —p)e ™™ + vV (— )], u<0.

From this, allowing for V,(u) = V,(—p)and V,(u) =
V,(—p), we obtain

1
10,00 = ——
( ’.u')|u 0] 1— 0102 e—(zf())rﬂ.
{9:0) + p1lg{— 1) + poViln)]

xe M 4+ py V() (64)

1
g, t)]co = i”:’;’;@iam

x{g2(10) + palgy(— 1) + p V()

xe M 4 oo V(i) (65)

The data, obtained by calculating the angular
distribution of the emergent radiation according to
relationships (57) and (58), are presented for the above
initial parameters in Figs 1-4. Solid lines in these
figures present the results of direct numerical in-
tegration of the radiation transfer equation. It can be
seen from the figures that the error introduced by the
approximate method amounts to 5%, It increases up to
20-25%; for the layer of a small optical thickness (z,
< 1) with the longitudinal distribution of temperature

F1G. 2. Angular distribution of radiation emitting from an inhomogeneous layer for different temperature
profiles [solid curves, exact calculation; dashed curves, calculation by equation (15)}: A =0.5:p, =0, p,
=0.5;() T =const; (b) T = Tz).



Radiation properties of inhomogeneous two-phase medium 65
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Fic. 3. Angular distribution of radiation emitting from an inhomogeneous layer for different temperature
profiles [solid curves, exact calculation ; dashed curves, calculation by equation (15)]: on the left side v = 1o,
on the right side T = 0; T = Tb(x); p; =0, p, = 0.5; (a) A =0.5; (b) 0.9; (c) 0.99.

T = T%(t) (Fig. 3), but rapidly decreases with the
increase in 7,. The degree of anisotropy in the angular
distribution of radiation emitting from the layer

I(zo,1) 10, -1)

"= T0,0) Y

depends strongly on the value of the quantum survival
probability as well as on the temperature profile form,
optical properties of the medium and of the boundary
surfaces. A decrease in the probability of quantum
survival and an increase in the optical thickness

(a)

J/B(T,)

predictably results in a lower degree of anisotropy. It
should be noted that in the considered cases of
temperature distributions there is a pronounced effect
of radiation ‘blockage’, i.e. ‘hot’ radiation is screened
by the cold layers of the medium under study. This
effect is the stronger, the larger the optical thickness of
the layer or the larger the viewing angle.

5. CONCLUSIONS

Comparison of the data calculated by the developed
approximate method with the accurate results shows

)
Y

FiG. 4. Ang}llar distribution of radiation emitting from an inhomogeneous layer for different temperature
profiles [solid curves, exact calculation ; dashed curves, calculation by equation (15)]: T = T*(z); p, = 0, p,
=05;(a) 1 =0.5; (b) 0.9; (c) 0.99; (1) 7, = 2; (2) 4.0; (3) 10.0.

HMT 24:1 - E
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that it is possible to use the obtained relationships (12),
(20) and (21) for a wide range of variation of para-
meters with an accuracy adequate for practical pur-
poses. These relationships have an obvious physical
sense. The presence of reflecting boundary surfaces
reduces the error of the method. The equations
reported in literature for the layer radiation character-
istics follow from the general relationships as specific
cases. The analysis of the emissivity of an inhomo-
geneous two-phase layer made it possible to correctly
introduce the effective temperature which depends on
optical properties of the medium and the type of
temperature distribution over the layer. An equation is
also obtained for the thermal efficiency of screens,
which plays a major part in thermal engineering
calculations.

Relations (57) and (58) make it possible to analyze
the directed emissivity of an inhomogeneous two-
phase layer for any temperature profile depending on
optical properties of the medium and of the boundary
surfaces. Specific calculations of these relations in-
dicate their good accuracy even in the case of a very
sharp temperature gradient, T = T?(z). The degree of
anisotropy of the angular distribution of radiation
emitting from the layer depends strongly on the
probability of quantum survival, optical thickness of
the layer and the type of the temperature profile. It
should be noted in conclusion that on utilizing the
convention that radiation is emitted entirely in a
diffuse manner and then assuming that g = 1/2 in (57)
and (58), one can obtain the direction-averaged in-
tensities of radiation from the layer. These equations
are more accurate than (12) and can be used for a more
accurate determination of radiation fluxes as well as of
the thermal efficiency parameter of screens, .

1
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wn
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PROPRIETES RADIATIVES D’UN MILIEU PLAN
DIPHASIQUE ET NON HOMOGENE

Résumé —On développe une méthode approchée pour calculer lintensite et les flux de rayonnement pour une
couche diphasique non homogéne avec des frontiéres émissives et réﬂéchissame_s. En utilisant l’imégrau'on
numérique de Péquation de transfert radiatif, la précision de la méthode a été vérifiée pour un large domaine
de variation des paramétres initiaux. On présente une définition générale de la température effective de la

couche.
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UNTERSUCHUNG DER STRAHLUNGSEIGENSCHAFTEN EINES EBENEN
INHOMOGENEN ZWEIPHASENMEDIUMS

Zusammenfassung — Es wurde eine Ndherungsmethode entwickelt zur Berechnung der Strahlungsintensitét

und der Strahlungsdichten an einer inhomogenen Zweiphasenschicht mit emittierenden und reflektierenden

Grenzflichen. Unter Verwendung numerischer Integrationsverfahren fiir die Gleichung des

Strahlungsaustausches konnte die Genauigkeit der Methode fir einen weiten Variationsbereich der

Ausgangsparameter festgestellt werden. Es wird eine allgemeine Definition fiir die effektive Temperatur der
Schicht vorgeschlagen.

UCCIEAOBAHUE XAPAKTEPUCTUK M3JIVUEHMSA TUJIOCKON HEOAHOPOAHOM
JABYX®A3HOMN CPEJbI

AnnoTaums — PaspaboTtan npubankeHHbIE METOA pacdeTa MHTEHCHMBHOCTH H INOTOKOB H3J1YYEHHS.

BBIXOAALIETO H3 HEOJHOPOJHOro ABYX(PA3HOro Cj10f C MINYYAIOWMMH H OTPAXAKOWNMH rPaHHYHLIMH

noBepXxHOCTAMHU. C NOMOLIBIO YHCJIEHHOrO MHTErPUPOBAHHS YPABHEHHS epeHOCa H3jyueHHs onpene-

jieHa €ro TOYHOCTH TS LIMPOKOTO [JHana3oHa W3MEHEHHs MCXOIHBIX nNaHHbIX. [lpuBeseHo obiuee
onpeiesieHue a(beKTUBHON TeMnepaTyphl CJIOS.
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